viernes, 26 de febrero de 2010

segunda investigacion



DNS

Es un sistema de nomenclatura jerárquica para computadoras, servicios o cualquier recurso conectado al internet o a una red privada. Este sistema asocia información variada con nombres de dominios asignado a cada uno de los participantes. Su función más importante, es traducir (resolver) nombres inteligibles para los humanos en identificadores binarios asociados con los equipos conectados a la red, esto con el propósito de poder localizar y direccionar estos equipos mundialmente.




El DNS es una base de datos distribuida y jerárquica que almacena información asociada a nombres de dominio en redes como Internet. Aunque como base de datos el DNS es capaz de asociar diferentes tipos de información a cada nombre, los usos más comunes son la asignación de nombres de dominio a direcciones IP y la localización de los servidores de correo electrónico de cada dominio.


La asignación de nombres a direcciones IP es ciertamente la función más conocida de los protocolos DNS. Por ejemplo, si la dirección IP del sitio FTP de prox.mx es 200.64.128.4, la mayoría de la gente llega a este equipo especificando ftp.prox.mx y no la dirección IP. Además de ser más fácil de recordar, el nombre es más fiable. La dirección numérica podría cambiar por muchas razones, sin que tenga que cambiar el nombre.


Inicialmente, el DNS nació de la necesidad de recordar fácilmente los nombres de todos los servidores conectados a Internet. En un inicio, SRI (ahora SRI International) alojaba un archivo llamado HOSTS que contenía todos los nombres de dominio conocidos (técnicamente, este archivo aún existe - la mayoría de los sistemas operativos actuales todavía pueden ser configurados para revisar su archivo hosts). El crecimiento explosivo de la red causó que el sistema de nombres centralizado en el archivo hosts no resultara práctico y en 1983, Paul Mockapetris publicó los RFCs 882 y 883 definiendo lo que hoy en día ha evolucionado hacia el DNS moderno.


Backbone

La palabra backbone se refiere a las principales conexiones troncales de Internet. Está compuesta de un gran número de routers comerciales, gubernamentales, universitarios y otros de gran capacidad interconectados que llevan los datos a través de países, continentes y océanos del mundo.
Parte de la extrema resiliencia de Internet se debe a un alto nivel de redundancia en el backbone y al hecho de que las decisiones de encaminamiento IP se hacen y se actualizan durante el uso en tiempo real.
El término backbone también se refiere al cableado troncal o subsistema vertical en una instalación de red de área local que sigue la normativa de cableado estructurado.


TIPO DE RED CLASE A

La clase A comprende redes desde 1.0.0.0 hasta 127.0.0.0. El número de red está en el primer octeto, con lo que sólo hay 127 redes de este tipo, pero cada una tiene 24 bits disponibles para identificar a los nodos, lo que se corresponde con poder distinguir en la red unos 1.6 millones de nodos distintos.

Corresponden a redes que pueden direccionar hasta 16.777.214 máquinas cada una.
Las direcciones de red de clase A tienen siempre el primer bit a 0.
0 + Red (7 bits) + Máquina (24 bits)
Solo existen 124 direcciones de red de clase A.
Ejemplo:

Red
Máquina
Binario
0 0001010
00001111
00010000
00001011
Decimal
10
15
16
11






Rangos(notación decimal):
1.xxx.xxx.xxx - 126.xxx.xxx.xxx



TIPO DE RED CLASE B




La clase B comprende redes desde 128.0.0.0 hasta 191.255.0.0; siendo el número de red de 16 bits (los dos primeros octetos. Esto permite 16320 redes de 65024 nodos cada una.
Las direcciones de red de clase B permiten direccionar 65.534 máquinas cada una.
Los dos primeros bits de una dirección de red de clase B son siempre 01.
01 + Red (14 bits) + Máquina (16 bits)
Existen 16.382 direcciones de red de clase B.
Ejemplo:

Red
Máquina
Binario
10 000001
00001010
00000010
00000011
Decimal
129
10
2
3
Rangos(notación decimal):
128.001.xxx.xxx - 191.254.xxx.xxx




TIPO DE RED CLASE C



Las redes de clase C tienen el rango de direcciones desde 192.0.0.0 hasta 223.255.255.0, contando con tres octetos para identificar la red. Por lo tanto, hay cerca de 2 millones de redes de este tipo con un máximo de 254 nodos cada una.
Las direcciones de clase C permiten direccionar 254 máquinas.
Las direcciones de clase C empiezan con los bits 110
110 + Red (21 bits) + Máquina (8 bits)
Existen 2.097.152 direcciones de red de clase C.
Ejemplo:

Red
Máquina
Binario
110 01010
00001111
00010111
00001011
Decimal
202
15
23
11
Rangos(notación decimal):
192.000.001.xxx - 223.255.254..xxx



TIPO DE RED CLASE D



Las direcciones de clase D son un grupo especial que se utiliza para dirigirse a grupos de máquinas. Estas direcciones son muy poco utilizadas. Los cuatro primeros bits de una dirección de clase D son 1110.
Comprenden las direcciones entre 224.0.0.0 y 254.0.0.0, y están reservadas para uso futuro, o con fines experimentales. No especifican, pues, ninguna red de Internet.

Direcciones de red reservadas
Cuando se creó Internet y se definió el protocolo IP, al desarrollar los conceptos de clases A, B y C se reservaron una red clase A (10.X.X.X), quince clases B (172.16.X.X a 172.31.X.X) y 255 clases C (192.168.0.X a 192.168.255.X) para su uso privado. Este uso privado consiste en que el órgano competente en la asignación de direcciones no concede estas clases, y se reservan para que las redes privadas sin conexión con el mundo exterior hagan uso de ellas de tal manera de no provocar colisiones si en el futuro estas redes se conectan a redes públicas.
De esta forma se definen dos tipos de direcciones IP, direcciones IP públicas, que son aquellas que conceden los organismos internacionales competentes en esta materia y que van a ser usadas en Redes IP Globales, y direcciones IP privadas, definidas como aquellas que van a identificar a los equipos cuando se hable de Redes IP Privadas.

Existen una serie de direcciones IP con significados especiales.
Direcciones de subredes reservadas:
000.xxx.xxx.xxx (1)
127.xxx.xxx.xxx (reservada como la propia máquina)
128.000.xxx.xxx (1)
191.255.xxx.xxx (2)
192.168.xxx.xxx (reservada para intranets)
223.255.255.xxx (2)
Direcciones de máquinas reservadas:
xxx.000.000.000 (1)
xxx.255.255.255 (2)
xxx.xxx.000.000 (1)
xxx.xxx.255.255 (2)
xxx.xxx.xxx.000 (1)
xxx.xxx.xxx.255 (2)

Se utilizan para identificar a la red.
Se usa para enmascarar.

TCP/IP

La familia de protocolos de Internet es un conjunto de protocolos de red en los que se basa Internet y que permiten la transmisión de datos entre redes de computadoras. En ocasiones se le denomina conjunto de protocolos TCP/IP, en referencia a los dos protocolos más importantes que la componen: Protocolo de Control de Transmisión (TCP) y Protocolo de Internet (IP), que fueron los dos primeros en definirse, y que son los más utilizados de la familia. Existen tantos protocolos en este conjunto que llegan a ser más de 100 diferentes, entre ellos se encuentra el popular HTTP (HyperText Transfer Protocol), que es el que se utiliza para acceder a las páginas web, además de otros como el ARP (Address Resolution Protocol) para la resolución de direcciones, el FTP (File Transfer Protocol) para transferencia de archivos, y el SMTP (Simple Mail Transfer Protocol) y el POP (Post Office Protocol) para correo electrónico, TELNET para acceder a equipos remotos, entre otros.
El TCP/IP es la base de Internet, y sirve para enlazar computadoras que utilizan diferentes sistemas operativos, incluyendo PC, minicomputadoras y computadoras centrales sobre redes de área local (LAN) y área extensa (WAN). TCP/IP fue desarrollado y demostrado por primera vez en 1972 por el Departamento de Defensa de los Estados Unidos, ejecutándolo en ARPANET, una red de área extensa de dicho departamento.
La familia de protocolos de Internet puede describirse por analogía con el modelo OSI (Open System Interconnection), que describe los niveles o capas de la pila de protocolos, aunque en la práctica no corresponde exactamente con el modelo en Internet. En una pila de protocolos, cada nivel soluciona una serie de problemas relacionados con la transmisión de datos, y proporciona un servicio bien definido a los niveles más altos. Los niveles superiores son los más cercanos al usuario y tratan con datos más abstractos, dejando a los niveles más bajos la labor de traducir los datos de forma que sean físicamente manipulables.
El modelo de Internet fue diseñado como la solución a un problema práctico de ingeniería. El modelo OSI, en cambio, fue propuesto como una aproximación teórica y también como una primera fase en la evolución de las redes de ordenadores. Por lo tanto, el modelo OSI es más fácil de entender, pero el modelo TCP/IP es el que realmente se usa. Sirve de ayuda entender el modelo OSI antes de conocer TCP/IP, ya que se aplican los mismos principios, pero son más fáciles de entender en el modelo OSI.



NetBEUI


Es un protocolo de nivel de red sin encaminamiento y bastante sencillo utilizado como una de las capas en las primeras redes de Microsoft. NetBIOS sobre NetBEUI es utilizado por muchos sistemas operativos desarrollados en los 1990, como LAN Manager, LAN Server, Windows 3.x, Windows 95 y Windows NT.
Este protocolo a veces es confundido con NetBIOS, pero NetBIOS es una idea de cómo un grupo de servicios deben ser dados a las aplicaciones. Con NetBEUI se convierte en un protocolo que implementa estos servicios. NetBEUI puede ser visto como una implementación de NetBIOS sobre IEEE 802.2 LLC. Otros protocolos, como NetBIOS sobre IPX/SPX o NetBIOS sobre TCP/IP, también implementan los servicios de NetBIOS pero con sus propias herramientas.
NetBEUI usa el modo 1 de IEEE 802.2 para proveer el servicio de nombres y el de datagramas, y el modo 2 para proveer el servicio de sesión. NetBEUI abusa de los mensajes broadcast, por lo que se ganó la reputación de usar el interfaz en exceso.
NetBIOS fue desarrollada para las redes de IBM por Saytek, y lo uso también Microsoft en su MS-NET en 1985. En 1987 Microsoft y Novell usaron también este protocolo para su red de los sistemas operativos LAN Manager y NetWare.
Debido a que NetBEUI no tiene encaminamiento, sólo puede usarse para comunicar terminales en el mismo segmento de red, pero puede comunicar dos segmentos de red que estén conectados mediante un puente de red. Esto significa que sólo es recomendable para redes medianas o pequeñas. Para poder usar este protocolo en redes más grandes de forma óptima debe ser implementado sobre otros protocolos como IPX o TCP/IP.



ANTENA PARABOLICA



La antena parabólica es un tipo de antena que se caracteriza por llevar un reflector parabólico. Su nombre proviene de la similitud a la parábola generada al cortar un cono recto con un plano paralelo a la directriz.
Las antenas parabólicas pueden ser usadas como antenas transmisoras o como antenas receptoras. En las antenas parabólicas transmisoras el reflector parabólico refleja la onda electromagnética generada por un dispositivo radiante que se encuentra ubicado en el foco del reflector parabólico, y los frentes de ondas que genera salen de este reflector en forma más coherente que otro tipo de antenas, mientras que en las antenas receptoras el reflector parabólico concentra la onda incidente en su foco donde también se encuentra un detector. Normalmente estas antenas en redes de microondas operan en forma full duplex, es decir, trasmiten y reciben simultáneamente
Las antenas parabólicas suelen ser utilizadas a frecuencias altas y tienen una ganancia elevada.



- TIPOS DE ANTENA -

Atendiendo a la superficie reflectora, pueden diferenciarse varios tipos de antenas parabólicas, los más extendidos son los siguientes:
La antena parabólica de foco centrado o primario, que se caracteriza por tener el reflector parabólico centrado respecto del foco.
La antena parabólica de foco desplazado u offset, que se caracteriza por tener el reflector parabólico desplazado respecto del foco. Son más eficientes que las parabólicas de foco centrado, porque el alimentador no hace sombra sobre la superficie reflectora.
La antena parabólica Cassegrain, que se caracteriza por llevar un segundo reflector cerca de su foco, el cual refleja la onda radiada desde el dispositivo radiante hacia el reflector en las antenas transmisoras, o refleja la onda recibida desde el reflector hacia el dispositivo detector en las antenas receptoras.

CABLE COAXIAL

El cable coaxial o coaxial fue creado en la década de los 30, y es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla o blindaje, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante.
El conductor central puede estar constituido por un alambre sólido o por varios hilos retorcidos de cobre; mientras que el exterior puede ser una malla trenzada, una lámina enrollada o un tubo corrugado de cobre o aluminio. En este último caso resultará un cable semirrígido.
Debido a la necesidad de manejar frecuencias cada vez más altas y a la digitalización de las transmisiones, en años recientes se ha sustituido paulatinamente el uso del cable coaxial por el de fibra óptica, en particular para distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior.




DIRECCION IP



Una dirección IP es un número que identifica de manera lógica y jerárquica a una interfaz de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red del protocolo TCP/IP. Dicho número no se ha de confundir con la dirección MAC que es un número hexadecimal fijo que es asignado a la tarjeta o dispositivo de red por el fabricante, mientras que la dirección IP se puede cambiar. Esta dirección puede cambiar 2 ó 3 veces al día; y a esta forma de asignación de dirección IP se denomina una dirección IP dinámica (normalmente se abrevia como IP dinámica).
Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija (comúnmente, IP fija o IP estática), es decir, no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos, y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.
A través de Internet, los ordenadores se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, a los seres humanos nos es más cómodo utilizar otra notación más fácil de recordar y utilizar, como los nombres de dominio; la traducción entre unos y otros se resuelve mediante los servidores de nombres de dominio DNS.
Existe un protocolo para asignar direcciones IP dinámicas llamado DHCP (Dynamic Host Configuration Protocol).


Mascara subred (ip)

Cada modo de una red IP tiene asociado a su dirección una máscara de subred. La máscara de subred identifica qué bits (o qué porción) de su dirección es el identificador de la red. La máscara consiste en una secuencia de unos seguidos de una secuencia de ceros escrita de la misma manera que una dirección IP, por ejemplo, una máscara de 20 bits se escribiría 255.255.240.0, es decir una dirección IP con 20 bits en uno seguidos por 12 bits en 0, pero separada en bloques de a 8 bits escritos en decimal. La máscara determina todos los parámetros de una subred: dirección de red, dirección de difusión (broadcast) y direcciones asignables a nodos de red (hosts).
Los routers constituyen los límites entre las subredes. La comunicación desde y hasta otras subredes es hecha mediante un puerto específico de un router específico, por lo menos momentáneamente.
Una subred típica es una red física hecha con un router, por ejemplo una Red Ethernet o una VLAN (Virtual Local Area Network), Sin embargo, las subredes permiten a la red ser dividida lógicamente a pesar del diseño físico de la misma, por cuanto es posible dividir una red física en varias subredes configurando diferentes computadores host que utilicen diferentes routers. La dirección de todos los nodos en una subred comienzan con la misma secuencia binaria, que es su ID de red e ID de subred. En IPv4, las subredes deben ser identificadas por la base de la dirección y una máscara de subred.
Las subredes simplifican el enrutamiento, ya que cada subred típicamente es representada como una fila en las tablas de ruteo en cada router conectado. Las subredes fueron utilizadas antes de la introducción de las direcciones IPv4, para permitir a una red grande, tener un número importante de redes más pequeñas dentro, controladas por varios routers. Las subredes permiten el Enrutamiento Interdominio sin Clases (CIDR). Para que las computadoras puedan comunicarse con una red, es necesario contar con números IP propios, pero si tenemos dos o más redes,es fácil dividir una dirección IP entre todos los hosts de la red. De esta formas se pueden partir redes grandes en redes más pequeñas.
Es necesario para el funcionamiento de una subred, calcular los bits de una IP y quitarle los bits de host, y agregárselos a los bits de network mediante el uso de una operación lógica.

No hay comentarios:

Publicar un comentario